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General equations which descrii vortex filaments in an incompressible, low viscosity fluid are derived. Perturbation theory, which 
leads to these equations, is based on the topological properties of the trajectories of steady flows of an ideal fluid. The vortex 
filament equations turn out to be similar to the Prandtl equations in boundary-layer theory and the equations of V. I? Ma&v, 
which describe periodic “coherent” pulsations. An infinite series of integral relations, which, when the viscosity disappears, reduce 
to conservation laws, is found in the case of these equations. It is shown that the well known Moffatt-Kida-Ohkitani vortex is the 
simplest “steady” solution of the equations of a vortex filament. The equations of an elongated vortex are naturally treated as 
equations which are defined in a graph with boundary conditions at its vertices. The graph which occurs in this case is found to 
be associated in a natural way with the Morse theory and the topological theory of integrable Hamiltonian systems and is identical 
to the Reef and Fomenko invariants which are well known in these theories. Q 2000 Ekvier Science Ltd. AU rights reserved. 

From a mathematical point of view, localized perturbations in an incompressible fluid (vortex filaments, 
rings, films, narrow traces and nappes, boundary layers, etc.) are solutions of the equations of 
hydrodynamics containing a small parameter, the characteristic width of the perturbation compared 
with the scale of the external flow. Asymptotic methods, based on the deformation of some family of 
exact solutions of model (unperturbed) problems, are therefore used to describe them. 

An asymptotic scheme is developed below which describes vortex filaments (that is, perturbations 
concentrated in the small neighbourhood of a curve in three-dimensional space) and which uses the 
solutions of the steady-state Euler equations for an ideal fluid as the “zeroth approximation”: it is 
therefore assumed that the viscosity is fairly low. It is well known (see [l, 21, for example) that Eulerian 
flows possess rich topological properties and, moreover, the families of such flows are apparently 
parametrized by the topological characteristics of their trajectories ([3, 11). This is largely reflected in 
perturbation theory, and, in particular, the fundamental equations of the asymptotic scheme, that is, 
the equations of a vortex filament, are found to be closely associated with the topological 
characteristics of the trajectories of the corresponding Eulerian field. The central result of this paper 
is the derivation of the above-mentibned equations and their investigation. An analogy is established 
between the equations of an elongated vortex and the Prandtl equations (in particular, equations with 
a self-induced pressure). Conservation laws and integral identities, which the motion in a vortex filament 
satisfies, are also presented. 

1. PERTURBATION THEORY IN THE PROBLEM 
OF A VORTEX FILAMENT 

The steady-state three-dimensional velocity field, u(x) of an incompressible, viscous fluid satisfies the 
Navier-Stokes equations 

(u,V)u+Vp=vAu (v,u)=O (1.1) 

Suppose a smooth, external steady flow of a fluid is specified, that is, a solution V(x, v), P(x, v) of 
these equations which is bounded together with all of it derivatives and depends smoothly on its 
argumentsx E R3, v E [0, -1. We shall consider a perturbation of this flow which is localized in a small 
neighbourhood of- a certain (previously unknown) curve y in three-dimensional space. The 
characteristic width, E, of this neighbourhood (compared with the scale of the external field v) will be 
a small parameter in the problem under consideration. It is natural to treat this perturbation as a vortex 
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filament located in an external flow and, here, there is no assumption regarding the smallness of the 
perturbation compared with the field V. It can be shown (see [4], for example, where this was done for 
periodic coherent structures) that such rapid!y changing solutions can only exist if the viscosity is 
sufficiently low or, more accurately, if v = O(e2). Otherwise, the viscosity destroys the vortex. We shall 
therefore henceforth assume that v = e2Vo, Vo = O(1). 

Suppose x = R(s)  are the parametric equations of the curve % s is the length of an arc and we denote 
the orthonormalized n-hedron in the plane normal to V which satisfies the condition (nl(s),  n2(s)) = 0 
by nl(s) ,  n2(s). We now consider a certain neighbourhood G' of the curve ~/which is independent of e 
(but sufficiently small) and introduce the coordinates {s, yl,Y2} in this neighbourhood using the formulae 

x = R(s) + ylnl(s) + y2n2(s) 

The solution u, p of the three-dimensional Navier-Stokes equations in a smaller neighbourhood 
G C G'  will be sought in the form 

u = V(x, ~) + U(y/e, x, e), p = P(x, e) + 7t(y/e, x, e) (1.2) 

where the functions U(z, x, e), ~r(z, x, e) depend smoothly on all of their arguments when e ~ (0, Co), 
z ~ R2 ,x  ~ G and U(z ,x ,  e), ~r(z,x, e) ---> 0 when Izl oo not more slowly than O(Izl-2). The two- 
dimensional vector of the "stretched" coordinates in the plane which is normal to ~/will henceforth be 
denoted by ~/: z = y/e. Outside G, the functions U, "rr are multiplied by a smooth cutoff function which 
is equal to zero outside G' .  

We shall treat the problem of a vortex filament locally in a certain bounded open domain without 
being concerned about the boundary conditions or the conditions at infinity. As in the case of well- 
known boundary layer problems (see [5], for example), in the case of the present problem it is possible 
to consider "the problem of the continuation of a vortex" by assuming that a field of the form (1.2) is 
specified in a certain surface Mwhich transversely intersects the curve ~/. However, unlike the problem 
of the continuation of a boundary layer, this "initial" field cannot be specified arbitrarily and it follows 
from the results of the following section that it must satisfy Eqs (1.5)-(1.6) which are obtained below 
with respect to the "fast" variable z. This situation is characteristic in the case of the asymptotic solutions 
of non-linear equations (cf. [6-8]) and, as a rule, in such problems the form of the leading part of the 
asymptotic form is by no means arbitrary. 

We expand the functions from (1.2) using Taylor's formula when e ---> 0 

V(x, e) = V(x)  + e 2 Vl (x) + .... P(x, e) = P(x) + e 2 P~ (x) +.. .  

U(z, x, E) = U(z. s) + eU~ (z, x) + .... n(z. x, e) = JtotZ, s) + enj (z, x) +. . .  

(1.3) 

( V , V ) V + V P = O  (V, V) =0  (1.4) 

Subsequently, it is assumed everywhere that V(x) is the smooth solution of these equations. Within the 
domain G, we write the Navier-Stokes equations in (y, s) coordinates, substitute expressions (1.3) into 
Eqs (1.1), putyj = ezj, expand the resulting relations using Taylor's formula when e ---> 0 and equate the 
coefficients of all power of e to zero. For e -1, we obtain 

(v,V:)u +V~n 0 =0  (Vz ,u )=0  (1.5) 

(v, V..)w = 0 (1.6) 

V_ =(0/0zl ,  0/3z2), ui =<vn  +u, nj), w=(Vlv +U, dRIds )  

Henceforth, we shall consider the solutions v of the Euler equations in the plane of the "fast" variables 
z which satisfy the following conditions: 

1. the vector field v only has a finite number of singular points, and all of them are non-degenerate 
(then, by virtue of the solenoidal character o f . ,  these singular points are either saddle points or centres) 
and just one singular point lies in each separatrix; 

and we substitute these expansions into the Navier-Stokes equations (1.1). 
We will first consider the equalities which have been obtained outside a neighbourhood of the curve 

~/, which may be as small as desired (that is, when Izl oo). On equating the coefficient of e0 to zero, 
we obtain the three-dimensional Euler equations for the vector field V(x) 
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2. almost all of the trajectories of the field v are closed; 
It follows from the second requirement and from the fact that I Ui ---> 0 when Iz] ~ oo that the vector 

field v decays at infinity and, therefore, ( [ V[ ~, nj) = 0, that is, the curve ~/is a trajectory of the field 
V(x). The following assertion is thereby proved. 

Assertion 1. Suppose functions (1.2) satisfy mod O(1) the Navier-Stokes equations (1.1). Then, 
(a) the vector field v(z) satisfies the two-dimensional Euler equations in the plane; 
(b) the function w is constant in the trajectories of the field v; 
(c) moreover, if conditions 1 and 2 are satisfied, the curve ~/is a trajectory of  the vector field V(x). 

We will write out the equations obtained by equating to zero the coefficient of ~0, which arises when 
functions (1.2) are substituted into the Navier-Stokes equations (1.1). We get 

-(/2, Vz)w I - ( v  I,Vz)w = H(Z,S) 

--(v, Vz)v j -(/2 J,Vz)/2 - V z n  I = F(z,s); - ( V  z, /2 i )= G(z,s) (1.7) 

Here  

H(z,s)=w~)---~-w-l a--~-W2-k(s)(e(s),v)w+(b, u)+(Az,  V , )w+ - voA=w 
as 2 as " Os 

F( z, s) = w ~ + k( s)e(s)(w 2 - W 2) + A v + ( az, 7 .  )v - v0A,v 

G(Z, s) = ~-~ (W - w) - k(s)(e(s),v ) 

v~=(Ui ,nj ) ,  w I=(U I, R'(s)), W(s)=(V,R'(s))Iv 

by(s)=(R'(s), aVlay /  I~,), Aij(s)=(ni ,aVl~yj  I- t) 

This system consists of the linearized equations (1.5)-(1.6) with non-zero right-hand sides. The 
dependence of the field v and the function w on the "slow" variable s is determined from the conditions 
for this system to be solvable (compare with [6-9]). 

Before writing out these conditions, we present an assertion concerning the cokernel of the linearized 
Euler operator which has previously been proved [10, 11]. We consider equations which are formally 
adjoint to the linearized equations (1.5) in the space of solenoidal vector fields 

av* 
= V:z, (1.8) 

Here ~ is a two-dimensional vector field and × is a scalar function. 

Theorem 1. Suppose v(z) is a smooth of Eqs (1.5) with properties 1 and 2. Then, any smooth vector 
field ~ which commutes with the field v(z) satisfies Eqs (1.8). 

Remark. Vector fields which commute with the field v obviously form an infinite-dimensional linear space 
(cf. [4, 12]) and, in particular, all fields of the form {--~f/az2, ~f/~Zl}, where f(z) is an arbitrary smooth function 
which is constant in the trajectories of the field v, are contained in this space. 

We will now present the conditions for the system of equations (1.7) to be solvable (which have also 
been obtained previously in [10, 11]). 

Theorem 2. Suppose a smooth solution (v 1, Wl, 7q) of system (1.7) exists. Then, its right-hand sides 
H(z, s), F(z, s), G(z, s), satisfy the equalities 

= /22 

T+ 0 
(1.9) 

-~--~ ~ Gd(p + -~-l = O, -~--~ ~ Hd(p + aw ao(l, s)-~- i- = 0 

Here (and, subsequently, in Section 2) integration is carried out along an arbitrary closed trajectory of 
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the vector field v(z), (I, ~p) are the action-angle of the field u which are defined in the neighbourhood 
of this trajectory (see below) and ao(I, s) is an auxiliary function. 

Remark. The above conditions arise from the conditions for the right-hand sides of system (1.7) to be orthogonal 
to the space from the cokernel of the Euler operator indicated in Theorem 1 (together with the obvious infinite- 
dimensional cokernel of the linear operator (~, Vz); the latter consists of functions which are constant in trajectories 
of the field ~). A "basis" of this space is selected in writing the orthogonality conditions in a special manner. Roughly 
speaking, it consists of b-shaped fields with carriers in the trajectories ofv. In fact, such a choice of"basis" enables 
one to reduce the problem of finding the orthogonality conditions to averaging along the trajectories of the 
field ~. 

2. T H E  E Q U A T I O N S  OF A V O R T E X  F I L A M E N T  
AND T H E I R  R E L A T I O N  TO T H E  T O P O L O G I C A L  I N V A R I A N T S  

OF THE V E C T O R  F I E L D S  

Certain topological and hydrodynamic characteristics of the two-dimensional vector field v(z) (which 
depends on s as well as on a parameter) are required in the subsequent treatment. Actually, we consider 
an arbitrary domain in the {zl, z2) plane in which there are no equilibrium points and separatrices of 
the field ~. A closed trajectory of this field passes through each point of this domain, and we denote 
the area of the domain which is bounded by a trajectory, divided by 2"rr, by L The coordinates (the action- 
angle variables (see [1], for example)) I and q~ can be introduced in the domain being considered such 
that ~p e [0, 2at] is the angular variable in a closed trajectory, an element of volume has the form 
d l  A dq~ and the field ~ = to(I, s)O/Oq~, where to is the frequency. Functions, which are constant on the 
trajectories of the field ~, have the formf(I,  s) (they are independent of ~p). In particular, it follows from 
Eq. (.1.6) that the function w is of this form. Furthermore, it is well known that the Bernoulli integral 
v2/'2 + % of an Eulerian field is also constant on the trajectories. The function u2/2 + % + w2/2 is denoted 
by B(I, s). Hence, two characteristics of a vortex filament are defined in each domain which does not 
contain singular points and the separatrices of the field v and these are functions of the two variables 
B(I, s) and w(I, s). 

Theorem 3 [10, 11]. Equalities (1.9) are equivalent to the following system of equations 

where 

3w alv . , a (  , a i r  
+ o-D-+ = v0 j 

aw aa aB aB v ( a ( D , C ) B ]  A 2] 
wg+a = 0t 7C  TJ- ) (2.1) 

a =  - l  oW , I , ~ ( I W2)d~ ,,0 

ac0) t az, t ) 

This system is a set of equations in the functions w and B, defined in different domains of the z plane 
which do not contain separatrices. In each domain, the variable I changes in a segment (or in a half 
line, if the domain contains an infinitely distant point). Each separatrix of a saddle point of~  has the 
form of a figure eight and separates three such domains, and the values of the variable I at the ends of 
the corresponding segments, corresponding to a given separatrix, are connected by the relation/3 = 11 
+ I2, where I1,/2 are the areas (divided by 2~r) under the two parts of the separatrix into which it is 
separated by the saddle point, and/3 is the area under the whole of the separatrix. Since the solution 
of the Navier-Stokes equations is assumed to depend continuously on the fast variables z, each of the 
functions w and B takes the same value at the points I1, I 2, 13 which correspond to a given separatrix 
and this value is equal to the value of the corresponding function in the saddle. Hence, matching 
conditions arise at the ends of the segments in which Eqs (2.1) are defined. 

In order to provide a clear interpretation of the relations obtained, we consider a set of segments in 
a plane, each of which corresponds to a certain domain of variation of the variable/, and put the ends 
of the segments corresponding to a single separatrix at one point of the plane. As a result, we obtain 
the graph F which is a binary tree and either three edges join at each vertex (it then corresponds to a 
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separatrix of a saddle of the field ~) or one edge terminates (this vertex then corresponds to an 
equilibrium position of the "centre" type), and the graph does not contain closed paths (cycles). An 
example of a phase portrait of the field aJ and the graph F corresponding to it are shown in Fig. 1. 

The equations of a vortex filament in the variable I are defined on this graph and the functions B 
and w are continuous on it. Note that the function a does not possess the property of continuity. It has 
been shown [10] that, if Eqs (1.7) are solvable, then a = 0 at all vertices of degree 1 and the Kirchhoff 
condition in the theory of electric circuits: a 3 = al + a2, where aj = a(/j), is satisfied at each vertex of 
degree 3. 

The structure of Eqs (2.1) and the additional conditions imposed on the function a is not random 
and is associated with the topological properties of the solutions of the steady-state Euler equations in 
the following way. The problem of finding the solutions of Eqs (1.5), with a topology of the trajectories 
specified in advance, has been discussed previously ([3, 1, etc.]). The corresponding procedure has been 
described most fully by Moffatt [3] in the context of the theory of magnetic relaxation he has developed. 
This scheme is based on the properties of the equations of the magnetohydrodynamics (MHD) of an 
ideally conducting fluid, which have the form 

Ou 
- - +  (u, V .  )u + V . p  = lxA .u-  H x rot z H 
Ot " " 
OH 

+{u,H} =0  ( V z , u ) = ( V _ , H ) = O  
Ot 

where H(z, t) is the magnetic field, u(z, t) is the velocity field of the conducting fluid, {,} is the commutator 
of the vector fields and tz is the coefficient of viscosity (this coefficient is assumed to be quite large in 
Moffatt's case). 

The idea behind Moffatt's scheme is as follows. Consider the Cauchy problem u It=0 = 0, Hit= 0 = 
Ho(z), (Vz, H0) = 0 for the system of equations which has been written. From physical considerations, 
it is natural to assume that the velocity of the fluid decays with time, that is, u(z, t) ---) 0 when t ~ oo. 
It then follows from the second equation of the MHD system that, when t ---r 0% the vector field H (the 
magnetic field) tends to a certain limiting field H..(z).  On the other hand, we obtain from the first 
equation at the same time that H .  satisfies the equation H .  × rot.g/** = -Vav , which is simply 
another form of writing down the steady-state Euler equations (1.5). So, for long times, the magnetic 
field H, while evolving by virtue of the MHD equations, tends to the solution of the Euler 
equations. On the other hand, the second equation of the MHD system signifies that the vector field 
H(z, t) is obtained from the vector field Ho(z) by a translation of the field u along the flow, that is (since 
this field is solenoidal), by using a transformation of the z coordinate which preserves the element of 
area. 
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It follows from Moffatt's scheme that the families of solutions of Eqs (1.5) must be parametrized 
by the characteristics of the field ~, which are invariant under changes in the coordinates with a unit 
Jacobian (by topological invariants). These invariants can be described in explicit form: they consist 
of a set of trajectories of the field v, which is identical to the parametrized graph F, introduced above, 
and a continuous function (of frequency, for example) in it. Furthermore, the set of solutions of Eqs 
(1.6) is a set of functions which are constant in the trajectories of v, that is, defined in the same graph. 
Hence, the parameters, on which the solutions of system (1.5), (1.6) depend, are the pair of functions 
on the graph which can evolve along the axis of the vortex, that is, they can still depend on the 
variable s. 

Theorem 1 asserts that the space of the functions on the graph F is contained in the set of solutions 
of the equations which are adjoint to the linearized Euler equations. Actually, a solenoidal vector field 
which commutes with ~ has the same trajectories as ~ and differs from ~ solely in the frequency function, 
which is exactly defined on the graph F. 

Theorem 2 describes the conditions for the vector of the right-hand sides of system (1.7) to 
be orthogonal to the space of the pairs of functions specified on the graph. These conditions lead 
to equations describing the change in the topological invariants of the field ~ along the axis of the 
vortex, that is, to Eqs (2.1) which relate the pair of functions on the graph F. Note that the graph F is 
an example of a well-known object in topology, that is, a so-called Reef graph of Morse's function 
(see [13], for example). Actually, a Reef graph is a set of level lines of a function, all the critical points 
of which are non-degenerate. In our case, this function is the stream function of the two-dimensional 
Euler flow ~. 

3. P R O P E R T I E S  OF THE VORTEX F I L A M E N T  EQUATIONS 

Analogy with the Prandtl equations. Self-induced pressure and an analogue of turbulent viscosity. 
Equations (2.1) are similar to the Prandtl equations in boundary-layer theory: if we putD = I and assume 
that @s) is a known function of the single variable s, the first two equations in (2.1) are identical to the 
Prandtl equations. However, the term (%) cannot, generally speaking, be assumed to be a specified 
function. It is associated with the Bernoulli function B of the transverse circulations in a vortex. This 
brings Eqs (2.1) closer to the so-called Prandtl equations with a self-induced pressure (see [14], for 
example). The same also applies to the function D ~, which appears on the right-hand side of system of 
equations (2.1), which describe the effect of viscosity on a vortex filament. These are analogous functions 
in the equations describing turbulent flows (the coefficients of turbulent viscosity, see [15], for example). 
However, note that, unlike the above-mentioned equations, equalities (2.1) (and, in particular, the 
expressions for the coefficient 19 2 and the "self-induced pressure" (%)) are obtained not from physical 
considerations but as a mathematical consequence of the existence of a solution of the Navier-Stokes 
equations which describes a vortex filament: the connection between these terms and the function B 
is described by the Euler equations (1.5). 

Kirchhoff's conditions, which are imposed on the function a (together with the null conditions at the 
vertices of degree 1), enable one to eliminate this function from Eqs (2.1) in exactly the same way as 
the corresponding function is eliminated from the Prandtl's equations. Actually, it is possible to obtain 
a formula which expresses a in terms of w on an arbitrary edge of the graph F: 

a(I ,s )=-  I ( / ' , s )d l ' -Y .  I (l,s)dl 
ii D ' . j  m i 

where I0 is the value of the parameter I at the initial point of the edge and summation is carded out 
over all edges mj of the graph, which are counteraccessible from t~e given edge (that is, accessible on 
moving from the edge in the direction in which the parameter I decreases). On substituting this 
expression into the first and third equalities of (2.1), we obtain a system of two equations which do not 
contain the function a. 

Additional "boundary" conditions for the equations of a vortex filament. Since Eqs (2.1) in one of the 
variables are specified on a graph (that is, in a system of segments), it follows that they should be 
supplemented with conditions at the vertices (at the ends of the segments). Some of these conditions consist 
of the requirement that the functions B and w should be continuous on the graph F. However, generally 
speaking, this is insufficient and, since second derivatives with respect to the variable I occur in the equations, 
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it is necessary to add the conditions of c~-smoothness [16], which are specified at the vertices of the graph 
and connect the derivatives of an unknown function along the edges which converge at a given vertex. 

It is found that, in the case of the equations of a vortex filament, these conditions (and the equations 
themselves) follow from the existence of an asymptotic. In fact, it has been proved in [10] that, if the 
functions v, wC 2 are smooth, then the solutions of the equations of a vortex filament at each vertex of 
degree 3 satisfy Kirchhoff's conditions 

+(o aw a , j , ,  =, 

where the subscripts I and 2 denote the limits of the corresponding functions at the given vertex with 
respect to the edges converging at this vertex and the subscript 3 denotes the limit with respect to the 
emerging edge (the graph is orientated in the direction in which the parameter ! increases). 

In Eqs (2.1) there are free parameters associated, first, with the freedom in determining the 
parametrization of the graph F and, second, with the freedom in choosing the boundary conditions for 
w and B at vertices of degree 1. 

We will now clearly describe these parameters. Specification of the parametrization of graph F is 
equivalent to the specification of the values of the parameter I at the ends of its edges. Here, at all 
vertices of degree 1, this value must be equal to zero and at all vertices of degree 3, which correspond 
to three edges terminating at a given vertex, they must satisfy Kirchhoff's relation 13 = /1  +/2.  Hence, 
2m free parameters I~, 11 (j = 1, ..., m) arise in the specification of the parametrization, where m is 
the number of vertices of degree 3 of the graph F (or the number of saddle points of the solenoidal 
field y). Moreover, for the graph equations (2.1), the boundary conditions corresponding to the values 
of w j, B j at its vertices of degree 1 can be specified in an arbitrary way (see [16]), that is, at "centre" 
type singular points of the field v. A set of 2M parameters therefore arises, where M is the total number 
of singular points of the field v. It turns out that it is possible to obtain relations connecting these 
parameters. They follow from the same condition for the equations of the first approximation (1.7) to 
be solvable. In fact, the following assertion holds. 

Assertion Z Suppose Eqs (1.7) admit of a C2-smooth solution 'O 1, W 1. Then, the relations 

H(rj) =0, rotz F(rj)-G(rj)rotzu((i)=O (3.1) 

are satisfied at each singular point rj(j = 1 . . . . .  M) of the vector field v. 

Proof Consider the first equality of (1.7) at a singular point 0" Since v(~) = 0, the first term on the left- 
hand side of this equality vanishes. Next, the function w is constant in the trajectories of the vector field 

and hence, the singular points of v are the critical points of w. Consequently, the second term on the 
left-hand side of (1.7) also vanishes, which proves the first equality of (3.1). In order to prove the second 
equafity of (3.1), we apply the operation rot, to the second (vector) equation of (1.7) and substitute the 
singular point ~. into the resulting equality. On taking into account the fact that the function roDJ is constant 
on the trajectories of v, after some elementary calculations, we obtain, the second equality of (3.1). 

Remark. The second equality in (3.1) is a consequence of the existence of a g-function in the cokernel of the 
linearized Euler operator. Actually, any vector field of the form 

= sgrad 8(z - (i) 

satisfies system (1.8) (which is adjoint to the linearized Euler system), where we mean by a skew-gradient, sgrad, 
of a 8-function a linear functional in the space of two-dimensional Schwartz vector fields which acts according to 
the rule 

sgrad 8(z - ,)-)[q(z)] =-rot rl(Q) 

Similarly, the first equality in (3.1) is a consequence of the existence of g-functions in the cokernel of the linearized 
operator (1.6) 

We will now write conditions (3.1) in terms of the functions B, w. The values of these functions at 
the singular points l)- of the vector field ~ are denoted by Bj(s), wj(s) (note that these values are the critical 
ones of the above-mentioned functions). 
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Assertion 3. Equalities (3.1) are equivalent to the relations 

aB i (s) 
as = v0A'w(rj) 

aw~(s) 
qj (S) 3S 

The value, at a point rj of the vorticity function of the field v: qj(s), rotzv(rj) is denoted by q](s) (we recall 
that this function is constant in the trajectories of the field ~ and, in particular, ry are its critical points). 

Remark. Relations (3.2) are 2M relations in the 2M free parameters mentioned above in the solutions of the 
vortex filament equations (2.1). 

Proof. Consider the first equality in (3.1). Substituting H(z, s) from formula (1.7) and taking account 
of the fact that 

v (r i ) = V:w(ri) = 0 

we obtain 

aw i a _~_ W- s(rJ)-  w2 + (rj)- v0a:(r i )= 0 (3.3) 

Next, it follows from the Euler equations that 

an0as (rJ)=~-s° (~) 

Finally, since r: is a critical point of the function w, we have the relation 

aw aw] 
2w(ri)"~s (rJ)= 

Substituting the resulting equalities into (3.3), we obtain the first equality in (3.2). We now consider 
the second relation in (3.1). Substituting F and G from formulae (1.7) into this relation, taking account 
of  the fact that §. is a critical point of w and using standard formulae of vector analysis, we obtain 

aqj 
qi ~s (w(rj)- W) - v0A rot z v (I)) = 0 w j --~-s + q i trA - 

Taking into account the fact that trA = -aW/as, we obtain the second equality in (3.3). 

Integral identities and conservation laws. Equations (2.1) possess a number of interesting properties, 
namely, the solutions of these equations satisfy an infinite number of integral identities (of the type of 
energy balance equations) which, when v0 = 0 (that is, in an ideal fluid) reduce to conservation laws 
which hold for any value of v 0. 

Theorem 4. Suppose the functions ~, ~r~ w satisfy the Euler equations (1.5) and (1.6) and the functions 
w and B, constructed using them, and a certain function a which is smooth in the edges of graph F, 
satisfy Eqs (2.1). Suppose a, B, w satisfy Kirchhoff's conditions and, moreover, the functions w, ~, ~r 0, 

1 8 a0 decrease when I ~ ~, as 0 ( I -  - ), ~ > 0. The identities 

r 0Sr(, 

 Iw 2W dl =-v0I [Q"(S)D 2 + A2Q'W)ldl (3.5) os r r 

then hold. Here Q(t) is an arbitrary smooth function which vanishes when t = 0 and the angular brackets 
denote averaging along the trajectories of the field ~. 
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The proof was previously obtained in [10]. 

Remark. Equalities (3.4) are conservation laws for the vortex filament equations. These are laws of conservation 
of the longitudinal momentum of the vortex (of the integral of the longitudinal component of the velocity over 
the transverse cross-section) and the conservation of the difference between the energies of the longitudinal flow 
and the transverse circulations in a vortex. Equalities (3.5) are similar to energy balance equations and the right- 
hand side describes the viscous dissipation. When v0 = 0 (that is, if the fluid is ideal or the viscosity is much smaller 
than E2), Eqs (3.5) also reduce to the conservation laws 

~ wQ(B)di = 0 
Os r 

These qualities recall the well-known series of conservation laws for the two-dimensional, unsteady Euler equations. 
We recall that, by virtue of the above mentioned equations, the integral of any function (in particular, of any power) 
of the curl of the velocity field is conserved. 

4. A R A D I A L L Y - S Y M M E T R I C  V O R T E X  F I L A M E N T  

Consider vector fields v with the simplest phase portrait, that is, assume that there is only a single singular 
point in the z plane in the case of this field. This point is then necessarily of the "centre" type. In this 
ease, the corresponding graph F is the half line I = (0, oo). An extensive class of such solutions of the 
Euler equations (1.5) is known. These are radially-symmetric fields of the form 

V = (-O¥(r)lOz2,OV(r)lOzl), r= ~1 +Z~ 

where ~(r)  is a smooth function. Any such vector field satisfies Eqs (1.5) and any function w(r) satisfies 
Eqs (1.6). No other solutions of the Euler equations with the indicated topology of the phase curves 
are known and a hypothesis has been proposed in [17] according to which there are no other solutions. 
In every case, we shall subsequently confine ourselves to considering radially-symmetric solutions. In 
the radially-symmetric case, the actionMangle variables are defined in the whole of the z plane with 
a single singularity at zero. They have the form I = r2/2, q~ = ~ (the polar angle). In this situation, 
it is simpler in the calculations to use the frequency to(/) in a trajectory instead of the Bernoulli 
function B. 

We will now write out Eqs (2.1), which describe a vortex filament, for this case. We subtract the first 
equation in (2.1), multiplied by w, from the last equation in (2.1) and obtain 

( w ~--'~ + a ~l l( I2oo2 ) = 4Vol2O~ ~--~( lo~) (4.1) 

From the second equation in (2.1), we have w = ~J/OI, a = -Otp/Os, where ~(I, s) is a smooth function 
(a stream function). On differentiating the first equation in (2.1) with respect to I and writing (4.1) in 
terms of tp, we finally obtain the following system of equations, which is equivalent, in the case under 
consideration, to the equations of the vortex filament 

{~,/2¢o 2 } = 4 v 0 / 2 o ~  (Ro) 

where {,} is a Poisson bracket. Conditions (3.2) lead, after some simple calculations, to the two boundary 
conditions when I -- O: 

as ~ al ) - ! °°2dl = 2v° 012 ' -~s -~ "ffi-) al co 

Two special cases of Eqs (4.2) are considered next. 

A radial!y-symmetric vortex in an idealfluid. Suppose that v0 = 0. Then, the equations of system (4.2) 
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have zero  r ight-hand sides. In  this case, the first equality is satisfied, if co 2 = f o ( ~ ) / l  2 for a certain smooth  
funct ion )Co. Af te r  substituting this expression into the second equality, it is t ransformed to the form 

{~1/,02~1//0/2 + f~(ql) l  1} = 0 

The  last equali ty will obviously be satisfied if 

0 2 ~  I012  + f ~ ( ~ ) l  / = - g ( ~ )  

for a certain smooth  function g. Hence,  in the radially-symmetric case, the equat ions o f  a vortex filament 
reduce  to the "ordinary  differential equa t ion"  (compare  with the Grade-Shaf ranov  equat ion  [18]) 

i d2~  I dl 2 + f ( ~ )  + Ig(~)  = 0 

where  f and g are arbitrary smooth  functions ( f  = fb)- This equat ion  must  be supplemented  with the 
condi t ion for  the behaviour  o f  e at infinity 

= W(s) l  + ~(s) + 0 ( I  -I ) 

and, also, by condit ions (4.3) which take the form 

~ = ~ , ! + 0 ( I  2) when I---> 0, a ( ~ f ° ( ~ ) d l - W 2 ) = O  
TS L o-V-  

H e r e  k is a constant  (which is independen t  o f  bo th  I and s). 

A Mof fa t t -Kida-Ohki tan i  vortex. We will now consider  a radially-symmetric, e longated vortex in the 
special case o f  a l inear external flow V = (klXl, k2x2, k3X3). We select the straight line xl = x2 = 0 as 
the t rajectory ~t. System (4.2) then admits  o f  a simple solution for  which 

~! I = fA3s , a t .o /as  = o, - f A 3 a ( 1 2 t o 2 ) l a l  = 4 v o l 2 t o a 2 ( l c o ) l a l  2 

From the last equality, we find 

to = C(I - exp(-13/)) / 1 = 2C(1 - exp(-13r 2 •2))/r  2 

C =  const, 13 = X3(2Vo) -I 

This solution ( together  with a correct ion to it) was previously obta ined and investigated in detail in 
[17]. 
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